The generator matrix

 1  0  0  1  1  1  1  1  1  1  1 2X  0  6  1  1  6  1  1  1  1  1  1  1  X 2X  1  1  1  1 2X+3  1  1  1 X+3  1  1 2X  1  1  1  1 2X  1  1  X  3  1  1
 0  1  0  0  3 2X+7 2X+7  1 2X+5  8 X+8  1  1 X+3 X+6  8  1 2X+5  0 X+2 2X+4 X+1 X+1 2X+3  1  1 2X+2  X 2X+5  X  1  6 X+8 X+7  1 X+1 X+4  1 X+1 2X+8 X+2  X  3  8  3  1  1 X+7 X+6
 0  0  1  1  5  5 2X+6  1 2X+5  X 2X+1 X+1 2X+8  1 X+7 2X+8 2X+1 X+3 X+2 X+4  1 2X+8 X+6 2X+3 2X+5  3 2X+8  4 X+7 2X+2 2X+1 2X+3 2X+6 X+1  X 2X+3 2X+2 2X+4 X+2 X+3 2X+1 X+4  1 X+2  5  1 2X+8 X+8 X+7
 0  0  0 2X  6  3  0 2X+3 X+6  X  6  0 2X+3 X+6  3  6 2X 2X+3  X 2X X+3  X X+3 X+3 X+3 X+3 2X  X X+3 2X+6  3 2X+6  3  6  0 2X+3 2X X+6  3  6 2X+3  X X+6 X+3 X+3  6  6 2X+6 2X

generates a code of length 49 over Z9[X]/(X^2+6,3X) who�s minimum homogenous weight is 88.

Homogenous weight enumerator: w(x)=1x^0+402x^88+366x^89+1716x^90+3048x^91+4950x^92+7304x^93+9216x^94+11400x^95+16068x^96+18900x^97+20958x^98+23100x^99+20142x^100+15366x^101+11392x^102+6738x^103+3078x^104+1774x^105+750x^106+168x^107+92x^108+66x^109+78x^110+18x^111+30x^112+12x^113+8x^114+6x^117

The gray image is a code over GF(3) with n=441, k=11 and d=264.
This code was found by Heurico 1.16 in 47.7 seconds.